547 research outputs found

    SPT-GMOS: A Gemini/GMOS-South Spectroscopic Survey of Galaxy Clusters in the SPT-SZ Survey

    Get PDF
    We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg^2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m⋆). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ~20% of the full SPT-SZ sample

    A Foreground Masking Strategy for [CII] Intensity Mapping Experiments Using Galaxies Selected by Stellar Mass and Redshift

    Get PDF
    Intensity mapping provides a unique means to probe the epoch of reionization (EoR), when the neutral intergalactic medium was ionized by the energetic photons emitted from the first galaxies. The [CII] 158μ\mum fine-structure line is typically one of the brightest emission lines of star-forming galaxies and thus a promising tracer of the global EoR star-formation activity. However, [CII] intensity maps at 6≲z≲86 \lesssim z \lesssim 8 are contaminated by interloping CO rotational line emission (3≤Jupp≤63 \leq J_{\rm upp} \leq 6) from lower-redshift galaxies. Here we present a strategy to remove the foreground contamination in upcoming [CII] intensity mapping experiments, guided by a model of CO emission from foreground galaxies. The model is based on empirical measurements of the mean and scatter of the total infrared luminosities of galaxies at z108 M⊙z 10^{8}\,\rm M_{\rm \odot} selected in KK-band from the COSMOS/UltraVISTA survey, which can be converted to CO line strengths. For a mock field of the Tomographic Ionized-carbon Mapping Experiment (TIME), we find that masking out the "voxels" (spectral-spatial elements) containing foreground galaxies identified using an optimized CO flux threshold results in a zz-dependent criterion mKAB≲22m^{\rm AB}_{\rm K} \lesssim 22 (or M∗≳109 M⊙M_{*} \gtrsim 10^{9} \,\rm M_{\rm \odot}) at z<1z < 1 and makes a [CII]/COtot_{\rm tot} power ratio of ≳10\gtrsim 10 at k=0.1k=0.1 hh/Mpc achievable, at the cost of a moderate ≲8%\lesssim 8\% loss of total survey volume.Comment: 14 figures, 4 tables, re-submitted to ApJ after addressing reviewer's comments. Comments welcom

    SPT-GMOS: A Gemini/GMOS-South Spectroscopic Survey of Galaxy Clusters in the SPT-SZ Survey

    Get PDF
    We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg^2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m⋆). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ~20% of the full SPT-SZ sample

    Collective Intelligence for Control of Distributed Dynamical Systems

    Full text link
    We consider the El Farol bar problem, also known as the minority game (W. B. Arthur, ``The American Economic Review'', 84(2): 406--411 (1994), D. Challet and Y.C. Zhang, ``Physica A'', 256:514 (1998)). We view it as an instance of the general problem of how to configure the nodal elements of a distributed dynamical system so that they do not ``work at cross purposes'', in that their collective dynamics avoids frustration and thereby achieves a provided global goal. We summarize a mathematical theory for such configuration applicable when (as in the bar problem) the global goal can be expressed as minimizing a global energy function and the nodes can be expressed as minimizers of local free energy functions. We show that a system designed with that theory performs nearly optimally for the bar problem.Comment: 8 page

    SPIDER: a new balloon-borne experiment to measure CMB polarization on large angular scales

    Get PDF
    We describe SPIDER, a novel balloon-borne experiment designed to measure the polarization of the Cosmic Microwave Background (CMB) on large angular scales. The primary goal of SPIDER is to detect the faint signature of inflationary gravitational waves in the CMB polarization. The payload consists of six telescopes, each operating in a single frequency band and cooled to 4 K by a common LN/LHe cryostat. The primary optic for each telescope is a 25 cm diameter lens cooled to 4 K. Each telescope feeds an array of antenna coupled, polarization sensitive sub-Kelvin bolometers that covers a 20 degree diameter FOV with diffraction limited resolution. The six focal planes span 70 to 300 GHz in a manner optimized to separate polarized galactic emission from CMB polarization, and together contain over 2300 detectors. Polarization modulation is achieved by rotating a cryogenic half-wave plate in front of the primary optic of each telescope. The cryogenic system is designed for 30 days of operation. Observations will be conducted during the night portions of a mid-latitude, long duration balloon flight which will circumnavigate the globe from Australia. By spinning the payload at 1 rpm with the six telescopes fixed in elevation, SPIDER will map approximately half of the sky at each frequency on each night of the flight

    The Robinson Gravitational Wave Background Telescope (BICEP): a bolometric large angular scale CMB polarimeter

    Get PDF
    The Robinson Telescope (BICEP) is a ground-based millimeter-wave bolometric array designed to study the polarization of the cosmic microwave background radiation (CMB) and galactic foreground emission. Such measurements probe the energy scale of the inflationary epoch, tighten constraints on cosmological parameters, and verify our current understanding of CMB physics. Robinson consists of a 250-mm aperture refractive telescope that provides an instantaneous field-of-view of 17 degrees with angular resolution of 55 and 37 arcminutes at 100 GHz and 150 GHz, respectively. Forty-nine pair of polarization-sensitive bolometers are cooled to 250 mK using a 4He/3He/3He sorption fridge system, and coupled to incoming radiation via corrugated feed horns. The all-refractive optics is cooled to 4 K to minimize polarization systematics and instrument loading. The fully steerable 3-axis mount is capable of continuous boresight rotation or azimuth scanning at speeds up to 5 deg/s. Robinson has begun its first season of observation at the South Pole. Given the measured performance of the instrument along with the excellent observing environment, Robinson will measure the E-mode polarization with high sensitivity, and probe for the B-modes to unprecedented depths. In this paper we discuss aspects of the instrument design and their scientific motivations, scanning and operational strategies, and the results of initial testing and observations.Comment: 18 pages, 11 figures. To appear in Millimeter and Submillimeter Detectors and Instrumentation for Astronomy III, Proceedings of SPIE, 6275, 200

    A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data

    Full text link
    We study the consistency of 150 GHz data from the South Pole Telescope (SPT) and 143 GHz data from the Planck satellite over the patch of sky covered by the SPT-SZ survey. We first visually compare the maps and find that the residuals appear consistent with noise after accounting for differences in angular resolution and filtering. We then calculate (1) the cross-spectrum between two independent halves of SPT data, (2) the cross-spectrum between two independent halves of Planck data, and (3) the cross-spectrum between SPT and Planck data. We find the three cross-spectra are well-fit (PTE = 0.30) by the null hypothesis in which both experiments have measured the same sky map up to a single free calibration parameter---i.e., we find no evidence for systematic errors in either data set. As a by-product, we improve the precision of the SPT calibration by nearly an order of magnitude, from 2.6% to 0.3% in power. Finally, we compare all three cross-spectra to the full-sky Planck power spectrum and find marginal evidence for differences between the power spectra from the SPT-SZ footprint and the full sky. We model these differences as a power law in spherical harmonic multipole number. The best-fit value of this tilt is consistent among the three cross-spectra in the SPT-SZ footprint, implying that the source of this tilt is a sample variance fluctuation in the SPT-SZ region relative to the full sky. The consistency of cosmological parameters derived from these datasets is discussed in a companion paper.Comment: 15 pages, 9 figures. Published in The Astrophysical Journal. Current arxiv version matches published versio

    A Measurement of the Correlation of Galaxy Surveys with CMB Lensing Convergence Maps from the South Pole Telescope

    Get PDF
    We compare cosmic microwave background lensing convergence maps derived from South Pole Telescope (SPT) data with galaxy survey data from the Blanco Cosmology Survey, WISE, and a new large Spitzer/IRAC field designed to overlap with the SPT survey. Using optical and infrared catalogs covering between 17 and 68 deg^2 of sky, we detect a correlation between the SPT convergence maps and each of the galaxy density maps at >4σ, with zero correlation robustly ruled out in all cases. The amplitude and shape of the cross-power spectra are in good agreement with theoretical expectations and the measured galaxy bias is consistent with previous work. The detections reported here utilize a small fraction of the full 2500 deg^2 SPT survey data and serve as both a proof of principle of the technique and an illustration of the potential of this emerging cosmological probe
    • …
    corecore